

Brief Introduction on Nakoso IGCC Demonstration plant Technology and its test results

January 24th 2012

Tsutomu Watanabe

Basic Concept of IGCC

The thermal efficiency of IGCC is higher than that of PCF by using combined cycle power generation technology.

There are two types of IGCC, Oxygen-blown type and Air-blown type.

Schematic diagram of Demonstration Plant

Purpose of ASU is to produce N₂ to pressurizing and transporting Coal and Char, and the ASU is very small.

Bird's-eye view of IGCC Demonstration Plant

Development history of air-blown IGCC in Japan

Shareholders of CCP are 10 major Utilities in Japan

Pilot plant IGC Research Association 200t/d Equivalent to 25MW (1991-1996)

Demonstration plant CCP R&D Co.,Ltd. 1700t/d 250MW (2007-2010)

Process development unit CRIEPI-MHI 2t/d(1983-1995)

Confirmation test plant MHI Nagasaki 24t/d (1998-2002)

CRIEPI: Central Research Institute of Electric Power Industry

Demonstration Project Schedule

Year	99	00	01	02	03	04	05	06	07	08	09	10	11	12
Preparatory Verification Study														
Design of Demo Plant	CCP	est	abli:	shec										
Environmental Impact Assessment														
Construction of Demo Plant											Pres	sent :	stage	•
Operation test														

Operation test was started in September, 2007.

Projects _{Site}	Buggenum Netherland	Puertollano Spain	Wabash River USA	Tampa USA	Nakoso Japan
Gasifier type	O₂-blown Dry-feed	O ₂ -blown Dry-feed	O ₂ -blown Slurry-feed	O ₂ -blown Slurry-feed	Air-blown Dry-feed
	Shell	Penflo	E-Gas™	GE	МНІ
Coal consumption	2,000 t/d	2,600 t/d	2,500 t/d	2,500 t/d	1,700 t/d
Gross output	284 MW 1,100degC- class	335 MW 1,300degC- class	297 MW 1,300degC- class	315 MW 1,300degC- class	250MW 1,200degC- class
Demonstration test start	Jan. 1994	Dec. 1997	Oct. 1995	Sep. 1996	Sep. 2007

Oxygen-blown IGCC Air-blown IGCC

Air-blown IGCC applied in Nakoso is expected to realize high thermal efficiency compared with oxygen-blown IGCC.

Thermal efficiency improves with the advancement of high temperature gas turbine combined cycle technology.

CO2 Emission by Fuel and Cycle

Target of IGCC development

Well coordinated combination of 3E +reliability

IGCC Operating Hours

(As of January 15, 2012)

Operating Time	GT Operation by Syngas	14,000 hrs		
	Gasifier Operation	14,122 hrs		
Power Generation	Cumulative gross output	2,789GWh		

Summary of Targets & Achievements							
	Targets	Results	Status of Achievement	Future plan			
Safe and Stable Operation	250MW	250MW	Achieved				
Long Term Continuous Operation	>2000hr	2238hr	Achieved	1			
Net Thermal Efficiency	>42% (LHV basis)	42.9%	Achieved	-			
Carbon Conversion Rate	>99.9%	>99.9%	Achieved	—			
Environmental Performance	SOx <8ppm NOx <5ppm Dust <4mg/m3N	1.0ppm 3.4ppm <0.1mg/m3N	Achieved	_			
Coals	Bituminous (B) Sub-bituminous (SB)	Chinese (B) Russia (B) USA (SB) Indonesian (SB) Columbia (B)	Achieved	Increase in coal Types			
Start-up Time	<18hr	15hr	Achieved	–)			
Minimum Load	50%	36%	Achieved	Decrease in minimum load			
Load Change Rate	3%/min	3%/min	Achieved	_			
Durability & Reliability & Maintainability	Evaluate during 5000hr test	5013hr in one year, No serious damage	Almost achieved	Maintenance interval Evaluation, Higher availability			
Economy estimation	Less than or equal to PCF power generation cost	Construction cost and operation cost was estimated.	Under study	Maintenance cost Evaluation etc.			

Test results: Reliability

- Capability of stable power generation at rated power was confirmed.
- •2000hours continuous operation was achieved in the first year.

CCP

Slag hole blockage has never been experienced. The molten slag is constantly flowing, keeping the gasifier in very stable condition.

Copyright Clean Coal Power R&D Co., Ltd

Test Results: Plant performance

	Design values	Results
Atmospheric Temperature	15degC	13.1degC
Gross Output	250 MW	250.0 MW
Gas Turbine Output	128.9 MW	124.4 MW
Steam Turbine Output	121.1 MW	125.8 MW
Net Efficiency (LHV)	42 %	42.4 %(42.9%)
Syngas LHV	4.8 MJ/m ³ N	5.2 MJ/m ³ N
Composition CO	28.0 %	30.5 %
CO2	3.8 %	2.8 %
H2	10.4 %	10.5 %
CH4	0.3 %	0.7 %
N2etc.	57.5 %	55.5%
Environmental Performance (16% O2 Corrected) SOx NOx Particulate	<target> 8 ppm 5 ppm 4 mg/m³N</target>	1.0ppm 3.4 ppm <0.1 mg/m³N

Full load (250MW) operation was achieved in March 2008. Stable and continuous full load operation as well as design plant performance was confirmed.

Properties of coal used in 2009, 2010

		#1 (design coal) Chinese	#2 North American	Indonesian Coal		
		Shenhua Jan, 2009	PRB Feb, 2010	#3 (A) Mar, 2009	#4 (B) Sep, 2010	
Gross Calorific e (air dry)	kJ/kg	27,120	26,670	26,370	23,010	
Total Moisture (as received)	wt%	15.4	25.3	21.7	29.7	
Total Sulphur (air dry)	wt%	0.25	0.39	0.25	0.12	
Proximate Analysis (air dry)						
Inherent Moisture	wt%	7.5	8.0	7.9	17.1	
Fixed Carbon	wt%	51.3	47.4	45.2	37.8	
Volatile Matter	wt%	32.3	39.1	42.5	41.6	
Ash	wt%	8.9	5.5	4.4	3.5	
Fusibility of Coal Ash						
Flow Temperature	deg C	1225	1420	1260	1230	

Bituminous coal and sub-bituminous coal have been used at the Demo Plant. Test for Columbian and Russian coal was finished recently.

Test results: operational capability

Load Change Rate

Load change rate of 3%/min which is compatible with conventional PCF in Japan, was realized by adjusting the operation parameters.

Study results (still under way): Economy

Evaluation on economy of commercial IGCC is under way based on the results of construction, operation and maintenance of demonstration plant.

Power generation cost/kWh =

Economy estimation

(1)Construction cost is to be almost 20% higher than conventional PCF at initial commercial stage.

Cost-reduction in facility is under study such as reducing the components, reflecting the various test results.

- ②Fuel cost mainly consisting operating cost could be *almost 20% lower than PCF* at commercial stage because of higher efficiency.
- ③Maintenance cost is under study while conducting maintenance work in the plant.

We conduced maintenance outage by law this year, we are analyzing the cost for the estimation at commercial stage .

Study results: Required space

The space of IGCC at commercial stage is expected to be equal or smaller than that of conventional PCF plant.

New Subject under consideration

Regarding the Earthquake on March 11th

Nakoso IGCC incurred severe damages mainly because of the tsunami

(strong jolts did not bring about fatal damages to the facilities)

- March 11th IGCC System halted its operation safely
 A lot of facilities were submerged
 No fatal damage in the main IGCC system
- In March Minimum personnel stationed while preparing for the worst case of the nuclear accident
- Early April Starting the restoration work (on April 11th and 12th, additional strong jolts)
- Between middle April and end of June
 Restoration work continued
- July Test and adjusting and started the operation 28th
- *After August 10th*, Continuous operation for 2238hours
- After December 1st Continuous operation until now

Some Remarks

- New technology development is one of the key issues for energy sector to meet the needs of the society
- In generation field, IGCC is a good candidate for fulfilling the requirements of coal generation such as on environment, economy, energy security in coming years
- Air-blown IGCC developed in Japan is showing its capability and potential for future
- It would be rewarding to share the experiences in the related area between India and Japan

More information is available in our Home Page site

Clean Coal Power R&D

Copyright Clean Coal Power R&D Co., Ltd